Свечи с двумя боковыми электродами

0
886

Содержание

Свеча зажигания – деталь, без которой невозможна эксплуатация автомобиля. Задача ее предельно проста. Полученное от аккумулятора напряжение она преобразует в искру, с помощью которой воспламеняется смесь бензина и воздуха. Речь идет именно о бензиновых двигателях, в конструкции дизельных двигателей свечи не предусмотрены.

Как и многие другие детали, свечи зажигания являются расходным материалом, т. е., подлежат обязательной замене по истечении определенного времени. Тут можно руководствоваться километражем или звуком работы двигателя. Но в любом случае, когда приходит время замены, у каждого встает вопрос: какие свечи зажигания лучше?

В настоящей статье мы попытаемся осветить различные аспекты этого непростого вопроса.

Виды свечей зажигания

Давайте рассмотрим, какие свечи зажигания бывают. Первостепенное значение имеют электроды.

По количеству электродов свечи делятся на:

  • двухэлектродные;
  • многоэлектродные;
  • факельные;
  • плазменно-форкамерные.

Двухэлектродные свечи – классический вариант. Один центральный и один боковой электрод, между которыми возникает искра, воспламеняющая воздушно-топливную смесь.

Ещё свечи могут иметь на электродах V-образную или U-образную канавки, которые увеличивают размер пламени (лучше работает двигатель на низких оборотах). Также, встречаются свечи зажигания с выступающим электродом — цель которого улучшить воспламенение в камере сгорания (применяются только для определенных двигателей).

Двухэлектродная свеча
1 — центральный электрод; 2 — боковой электрод; 3 — V-образная канавка; 4 — U-образная канавка; 5 — разница в величине выступания электрода.

Многоэлектродные свечи – улучшенная схема. Центральный электрод по-прежнему один, а боковых – два, три или более. При такой схеме — искрообразование становится более стабильным. Как следствие – более ровная работа двигателя и увеличенный срок эксплуатации свечей.

Факельные и плазменно-форкамерные свечи не имеют боковых электродов в привычном смысле этого слова. Возникновение искры здесь происходит при помощи конусного резонатора. Воспламенение топлива происходит равномерно и постоянно.

Это – лучший на сегодняшний день вариант свечи зажигания по словам производителей. Но по отзывам автомобилистов — это не так! Стоимость подобных свечек, разумеется, на порядок выше, чем у обычных.

Электродные свечи традиционно разделяют на:

Разница в названии: центральный электрод однометаллической свечи зажигания изготовлен из однородного сплава, большую часть которого составляет медь. Биметаллический электрод состоит из двух частей. Опорная часть – обычный сплав, рабочая – металл с лучшими характеристиками. Это может быть иридий, платина или серебро.

На рабочей части электродов металл с лучшими характеристиками

Одна из важнейших характеристик свечей зажигания – так называемое калильное число. Это параметр, обозначающий давление, при котором возникает калильное зажигание. Обычно в документации автомобиля указывается, свечи с каким калильным числом должны в нем использоваться. Старайтесь придерживаться этих рекомендаций.

Свечи бывают холодные и горячие

По калильному числу свечи зажигания делятся на:

холодные (от 20 и выше);
горячие (от 11 до 14)
средние (17-19).

Впрочем, обычно автовладельцы делят свечи просто на «холодные» и «горячие».

Из чего делают свечи

Рабочая часть свечи зажигания – это электроды. Соответственно, большинство параметров свечи сводится к характеристикам электродов. Ключевое значение имеет материал электродов, а точнее – их наконечников.

В зависимости от используемых при производстве электродов металлов, свечи зажигания делятся на:

  • иридиевые;
  • платиновые, серебряные, золотые и пр.
  • обычные медные, либо хромо-никелевые.

Медные (или хромо-никелевые) свечи – это стандартный вариант. Стоят недорого ( около 100 рублей за свечу), вырабатывают свой ресурс через 25-30 тыс. км. Выбирая такую свечу, вы покупаете зарекомендовавший себя качественный продукт и при этом не переплачиваете.

Платиновые свечи (либо из другого драгоценного металла, см. выше) – продвинутая и улучшенная технология.

Применение платины при изготовлении электрода дает свече больший срок эксплуатации. Если платиновая свечка соответствует требуемым параметрам, вы отъездите с ней не меньше 50 тыс. км. Кроме того, платиновые свечки менее подвержены образованию нагара, что позволяет двигателю полнее раскрывать свой ресурс. Иными словами, ехать машина будет лучше.

Иридиевые свечи . Применение в изготовлении свечей иридия улучшает характеристики свечи в разы. Идеальное, бесперебойное искрообразование позволяет двигателю работать лучше. Ресурс такой свечи составляет около 100 000 км.

Итак, какую же свечу поставить в свой автомобиль? Какие свечи лучше – иридиевые или платиновые? Или, может быть, лучше остановиться на обычных медных? Ответ лежит на поверхности. Иридий и платина стоят дороговато, но работают лучше. К тому же увеличенный срок службы в итоге оправдает траты.

Разумеется, иридиевая свеча лучше платиновой. Если позволяют финансы, лучше отдать предпочтение иридию. Если с деньгами не очень, то сойдет и платина, как золотая середина. Главное, о чем следует помнить: какой бы ни была свеча, если она подобрана неверно, это обязательно скажется на работе двигателя и на сроке службы свечи.

Видео: описание медных, платиновых и иридиевых свечей зажигания.

Производители свечей зажигания

Многих терзает вопрос: какой фирмы свечи зажигания лучше?

На сегодняшний день самыми заметными игроками на рынке свечей зажигания являются Denso, NGK, Bosch. Также неплохо себя зарекомендовала фирма Champion. Кстати, они первые стали делать биметаллическим не только центральный электрод, но и боковые. А патент на производство иридиевых свечей принадлежит японской фирме NGK.

Какую фирму выбрать.

Все перечисленные производители выпускают по-настоящему качественную продукцию, каких-либо очевидных преимуществ друг перед другом у них нет. Послушавшись совета знакомых в выборе производителя, вы, скорее всего, не прогадаете. Ключевое значение все-таки будут иметь параметры свечи, а не фирма-производитель. Так что сказать однозначно, какие свечи зажигания лучше – NGK или Denso, вам никто не сможет. Это на 99% вопрос личного предпочтения и на 1% — вопрос индивидуальной реакции двигателя.

Тем не менее, даже приобретая продукцию известной марки, велика вероятность столкнуться с подделкой! Не позволяйте себя одурачить! Покупайте свечи только в специализированных магазинах. Узнайте заранее примерные цены на оригинальные свечи того производителя, на котором решили остановиться. Если предлагаемые свечи будут ощутимо дешевле – откажитесь от покупки. В любом случае не лишне будет попросить сертификат соответствия. Покупка некачественной свечи в лучшем случае приведет к ее недолгому сроку службы, а в худшем – к поломке двигателя.

У вас – газ

В целях экономии сегодня многие устанавливают на свой автомобиль газобаллонное оборудование. Смена вида топлива не проходит бесследно для двигателя, приходится сталкиваться со множеством нюансов. Один из таких нюансов – свечи.

В отличие от бензина, газ дает большую температуру при сгорании. Соответственно, процессы окисления и образования нагара на электродах происходят гораздо быстрее. Отсюда следует простой вывод: свечи нужно ставить дорогие, с биметаллическими электродами: иридиевые или платиновые.

Отвечая на вопрос, какие свечи зажигания лучше для ГБО, можно посоветовать придерживаться следующих критериев при выборе: биметаллические иридиевые или платиновые электроды, невысокое калильное число.

Если называть конкретные виды свечей, то на испытаниях с двигателем, работающим на газу, лучшие результаты показали:

  • Denso Iridium IW20;
  • NGK LPG Laser Line №2;
  • Bosch Platinum WR7DP.

Как видим, лидеры и тут остаются лидерами. Свечи могут использоваться как на бензиновых двигателях, так и на двигателях с ГБО.

Видео: состояние свечей после работы на газе (пропан).

Подводя итоги

Давайте «соберем в кучу» все то, что было нами сказано. Итак, при выборе свечей нужно руководствовать прежде всего рекомендациями производителя автомобиля.

Самые дешевые свечи – двуэлектродные, однометаллические. Наличие большего числа электродов положительно скажется на сроке службы свечи и работе двигателя. То же можно сказать об электродах, рабочие части которых изготовлены из драгоценных металлов. Denso, NGK, Bosch – лидеры рынка свечей зажигания. Выбирая их продукцию, вы не прогадаете.

Свеча зажигания — устройство для воспламенения топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, накаливания, каталитические, полупроводниковые поверхностного разряда, плазменные воспламенители и др.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Воспламенение топливо-воздушной смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом цикле, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В газотурбинных двигателях свеча воспламеняет струю топлива, выходящего из топливной форсунки в момент запуска, серией мощных дуговых разрядов. После этого горение факела топлива поддерживается самостоятельно. Используются, как правило, свечи поверхностного разряда, питающиеся высокочастотным током высокого напряжения от агрегата зажигания. Свечей чаще всего две (для надёжности), каждая установлена в воспламенителе со специальной пусковой форсункой, работающей только при запуске, что защищает свечу от обгорания при работе двигателя. [1] [2]

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Содержание

История [ править | править код ]

Первая свеча зажигания в ее современном виде была разработана немецким инженером и ученым Робертом Бошем в 1902 году. Впервые свеча зажигания была использована с магнето высокого напряжения, также разработанным в мастерской компании BOSCH. Свечи зажигания BOSCH стали использоваться в двигателях внутреннего сгорания Карла Бенца, заменив используемые в то время калильные трубки с открытым пламенем. С тех пор и по настоящее время практически все свечи зажигания используют тот же принцип работы и строение, как и в 1902 году, эволюция данного узла шла преимущественно по пути усовершенствования используемых материалов (для изолятора, проводников и т.п.) и технологии изготовления (удешевления).

Устройство свечей зажигания [ править | править код ]

Свеча зажигания состоит из металлического корпуса, изолятора и центрального проводника. Современные свечи могут иметь встроенный резистор между контактным выводом и центральным электродом.

Детали свечи зажигания [ править | править код ]

Контактный вывод [ править | править код ]

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора [ править | править код ]

Рёбра изолятора затрудняют электрический пробой по его поверхности, удлиняя путь поверхностных токов (эквивалент более длинному изолятору).

Изолятор [ править | править код ]

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1 000 °C и напряжение до 60 000 В [ уточнить ] . Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители [ править | править код ]

Предназначены для предотвращения прорыва горячих газов из камеры сгорания.

Корпус («юбка») [ править | править код ]

Служит для ввёртывания свечи в резьбу головки блока цилиндров, для отвода тепла от изолятора и электродов, а также является проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод [ править | править код ]

Как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напылением из платины и других благородных металлов. Заявленный ресурс таких автомобильных свечей до 100.000 км, применение тем выгоднее, что в некоторых V-образных двигателях, расположенных поперёк, замена свечей довольно трудоёмка.

С 1999 года на рынке появлялись свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи, снабженный специальным жаропрочным полусферическим насадком. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу и форкамера, в которой происходит первичное воспламенение смеси. Такая конструкция как будто обеспечивает большой ресурс и самоочистку электродов, которые постоянно продуваются.

Эффективность «форкамерных» свечей вызывает ожесточенные споры как среди специалистов, так и среди рядовых автомобилистов. Не остаются в стороне и автомобильные журналы, часто в пылу дискуссии путают форкамерные свечи с многочисленными "самодельными свечами", выполненных путем доработки традиционных свечей. Чаще всего незначительно дорабатывается центральный или боковой электроды. Был проведен эксперимент, который показал, что подобные изменения формы электродов (сверление отверстия, раздвоение) практически бесполезны. Нет данных о комплектации современных автомобилей такими свечами, производители подобной продукции пишут, что их свечи подходят к любому автомобилю.

Центральный электрод [ править | править код ]

Центральный электрод как правило соединяется с контактным выводом свечи через стеклогерметик с резистором, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди и хрома. Иногда на рабочую поверхность напыляют иттрий, в некоторых используют платиновые напайки или утонченный электрод из иридия. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор [ править | править код ]

Зазор — минимальное расстояние между центральным и боковым электродом.

Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяемые зазором:

  1. Чем больше зазор — тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение может пробить высоковольтные провода на корпус, «бегунок» распределителя и т. д.
  2. Чем больше зазор — тем сложнее пробить его искрой. Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением U p r <displaystyle U_>. Соответствующая напряжённость электрического поля E p r = U p r h <displaystyle E_=<frac >>>, где h <displaystyle h>— расстояние между электродами, называется электрической прочностью промежутка. То есть чем больше зазор — тем бо́льшее напряжение пробоя U p r <displaystyle U_>необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса, но это не важно в данном случае. Понятное дело, что высокое напряжение U <displaystyle U>пр мы не можем поменять — оно определяется системой зажигания. А вот зазор h <displaystyle h>мы поменять можем.
  3. Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким центральным электродом).
  4. Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить. Пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем определяется произведением относительной плотности газа δ <displaystyle delta >на расстояние h <displaystyle h>между электродами, U p r = U p r ( δ h ) <displaystyle U_=U_(delta h)>. Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20 °C, 760 мм рт. ст.).
  5. От зазора зависит соотношение между энергией, выделяемой в фазе пробоя, в дуговой фазе, и фазе тлеющего разряда. При увеличении зазора доля энергии пробоя растёт, и именно энергия, выделенная в фазе пробоя, определяет скорость сгорания. Поэтому на быстроходных двигателях зазор приходится увеличивать [3] .

Зазор свечей не является константой, один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя. При переоборудовании автомобиля под более дешевое альтернативное топливо — сжиженный и сжатый газ (LPG, CNG), искровой зазор следует уменьшить из-за большего пробивного напряжения, чем у бензиновой смеси.

Режимы работы свечей [ править | править код ]

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на «горячие», «холодные», «средние» — в зависимости от тепловой характеристики свечи, выражаемой её калильным числом.

Калильное число свечи зажигания определяется на специальной тарировочной установке, имеющей вид эталонного одноцилиндрового двигателя определённой конструкции. В этот двигатель устанавливают соответствующую свечу зажигания и испытывают его в различных режимах, отслеживая при этом характер работы, а также температуру и давление в цилиндре.

Каждому режиму работы двигателя соответствует определённое значение температуры теплового конуса изолятора свечи. Когда эта температура поднимается выше 850…900°С, в двигателе начинает происходить так называемое калильное зажигание — самопроизвольное, без искры, воспламенение рабочей смеси при контакте с раскалённым тепловым конусом изолятора и другими частями свечи. Данный процесс обычно проявляется при работе двигателя на больших оборотах под нагрузкой. Он может приводить к оплавлению поршня и камеры сгорания, прогоранию поршней и выпускных клапанов, а также повреждению иных элементов двигателя. Для его предотвращения в двигатель устанавливаются свечи зажигания с «холодной» тепловой характеристикой, что обеспечивается хорошим отводом тепла от теплового конуса изолятора свечи. У таких свечей тепловой конус короткий и изолятор почти на всей своей длине контактирует с металлом корпуса свечи, благодаря чему тепло от него хорошо отводится и его перегрева не происходит даже в форсированных моторах с напряжённым тепловым режимом.

С другой стороны, однако, нельзя допускать и слишком малой рабочей температуры теплового конуса свечи, поскольку при её снижении ниже 400…500°С на конусе начинается накопление отложений, вследствие чего происходит поверхностная утечка тока высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора, или вообще делает его невозможным. Поэтому в менее форсированных двигателях применяются «горячие» свечи, у которых тепловой конус изолятора имеет большую длину и теплоотвод от него затруднён, благодаря чему даже при невысокой тепловой напряжённости камеры сгорания происходит нагрев свечей и их выход на рабочую температуру, обеспечивающую самоочищение от продуктов сгорания топливной смеси — нагара, сажи и т. п.

Изоляторы свечей, работающих в оптимальном режиме, всегда имеют цвет «кофе с молоком», говорящий о правильной работе двигателя. Стоит отметить, что прогрев свечей до температуры самоочищения занимает достаточно много времени и происходит лишь примерно после 10 км пробега автомобиля, в особенности по скоростной трассе, когда тепловыделение велико. При поездках на более короткие расстояния, а также работе двигателя исключительно на малых и средних оборотах, самоочищения свечей не происходит и они покрываются нагаром, требуя периодической очистки (механической или пескоструйной).

Степень нагрева элементов свечей зависит от следующих основных факторов:

  • Внутренние факторы:
  • конструкция электродов и изолятора (длинный электрод и изолятор нагреваются быстрее);
  • материал электродов и изолятора;
  • толщина материалов;
  • степень теплового контакта элементов свечи с корпусом;
  • наличие медного сердечника в центральном электроде.
  • Внешние факторы
    • степень сжатия и компрессии;
    • тип топлива (более высокооктановое обладает большей температурой сгорания);
    • стиль езды (на больших оборотах и нагрузках двигателя нагрев свечей больше);
    • состав смеси (на бедных нагрев выше) и угол опережения зажигания.
    • «Горячие» свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Так как в этих случаях меньше температура в камере сгорания.

      «Холодные» свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива, а также в двигателях с воздушным охлаждением, отличающихся повышенной тепловой напряжённостью камеры сгорания.

      «Средние» свечи — занимают промежуточное положение между горячими и холодными (самые распространенные)

      Свечи зажигания с несколькими боковыми электродами.

      Зачем нужны свечи зажигания с несколькими боковыми электродами?
      При каждом процессе зажигания отделяются молекулы поверхности электрода. Это явление называется электроискровой эрозией. Как по пословице "капля по капле камень долбит", это неизбежно ведет к уносу вещества и таким образом к увеличению расстояния между электродами.
      Однако это увеличение допустимо только в известных пределах, так как иначе слишком сильно повышается требуемое напряжение, которое в значительной степени зависит от расстояния между электродами, а это ведет к пропускам зажигания. Однако в современных двигателях пропуски зажигания никоим образом недопустимы, так как они ведут к повышенным выбросам, пониженной мощности двигателя и повреждению каталитического нейтрализатора выхлопных газов.

      Чтобы увеличить срок службы свечи зажигания, можно, например, использовать материал с более высокой устойчивостью к эрозии (платина и т.д.) или изменить количество материала (2, 3 или 4 боковых электрода). Обе меры имеют целью гарантировать более длительный срок службы свечи зажигания и эксплуатационную надежность двигателя в течение длительного времени.
      Требования со стороны автомобильной промышленности к поставщикам комплектующих изделий в последние годы серьезно возросли, так как увеличение интервалов между работами по техническому обслуживанию является решающим критерием при покупке.
      Если предписанная периодичность замены в 60-е гг. составляла еще 5 000-10 000 км, то сегодня начинают применяться свечи зажигания со средним пробегом 60 000 км.

      Чтобы разрешить конфликт целей между эксплуатационной надежностью, долговечностью и снижением стоимости, фирма NGK выпустила свечи зажигания с несколькими боковыми электродами. Фирма NGK явилась одним из первых поставщиков комплектующих деталей для известных немецких автомобилестроителей (BMW, VW/Audi) с использованием этой технологии в серийном оснащении. Партнерское технологическое сотрудничество между автомобилестроителями и фирмой NGK привело к появлению высокотехнологичных свечей зажигания, которые обеспечивают для конечного потребителя явные преимущества: понижение эксплуатационных расходов, улучшение экологичности и повышенная эксплуатационная надежность