Октан корректор импульс 310 схема подключения

0
2553

Содержание

СТОЛ ЗАКАЗОВ:

БОНУСЫ:

ДОБАВИТЬ В ЗАКЛАДКИ

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение: Михаил Булах

Программирование: Данил Мончукин

Маркетинг: Татьяна Анастасьева

Перевод: Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Энциклопедия радиоэлектроники и электротехники

Эта статья посвящена дальнейшему совершенствованию популярной у автолюбителей конструкции октан-корректора. Предлагаемое дополнительное устройство существенно повышает эффективность его применения.

Электронный октан-корректор В. Сидорчука [1], доработанный Э. Адигамовым [2], безусловно, прост, надежен в эксплуатации и обладает отличной совместимостью с различными системами зажигания. К сожалению, у него, как и у других подобных устройств, время задержки импульсов зажигания зависит только от положения ручки установки угла опережения зажигания (УОЗ). Это означает, что установленный угол оптимален, строго говоря, только для одного значения частоты вращения коленчатого вала (или скорости движения автомобиля на той или иной передаче).

Известно, что автомобильный двигатель укомплектован центробежным и вакуумным автоматами, корректирующими УОЗ в зависимости от частоты вращения коленчатого вала и нагрузки двигателя, а также механическим установочным октан-корректором. Фактический УОЗ в каждый момент определен суммарным действием всех этих устройств, а при использовании электронного октан-корректора к полученному результату добавляется еще одно существенное слагаемое.

УОЗ, обеспечиваемый электронным октан-корректором [2], оз.ок=6Nt, где N — частота вращения коленчатого вала двигателя, мин -1 ; t — задержка момента зажигания, вносимая электронным октан-корректором, с. Предположим, что начальная установка механического октан-корректора соответствует +15 град. и при N = 1500 мин -1 оптимальная задержка момента зажигания, установленная электронным октан-корректором, равна 1 мс, что соответствует 9 град. угла поворота коленчатого вала.

При N = 750 мин -1 время задержки будет соответствовать 4,5 град., а при 3000 мин -1 — 18 град. угла поворота коленчатого вала. При 750 мин -1 результирующий УОЗ равен +10,5 град., при 1500 мин -1 — +6 град., а при 3000 мин -1 — минус 3 град. Причем в момент срабатывания узла выключения задержки зажигания (N = 3000 мин -1 ) УОЗ резко изменится сразу на 18 град.

Этот пример проиллюстрирован на рис. 1 графиком зависимости УОЗ () от частоты вращения коленчатого вала двигателя. Штриховой линией 1 показана требуемая зависимость, а сплошной ломаной 2 — фактически получаемая. Очевидно, что оптимизировать работу двигателя по углу опережения зажигания этот октан-коррекор способен только при длительном движении автомобиля с неизменной скоростью.

Вместе с тем имеется возможность путем несложной доработки устранить этот недостаток и превратить октанкорректор в устройство, позволяющее поддерживать требуемый УОЗ в широких пределах частоты вращения коленчатого вала. На рис. 2 представлена принципиальная схема узла, которым необходимо дополнить октан-корректор [2].

Узел работает следующим образом. Импульсы низкого уровня, снимаемые с выхода инвертора DD1.1, через дифференцирующую цепь C1R1VD1 поступают на вход таймера DA1, включенного по схеме одновибратора. Выходные прямоугольные импульсы одновибратора имеют постоянные длительность и амплитуду, а частота пропорциональна частоте вращения коленчатого вала двигателя.

С делителя напряжения R3 эти импульсы поступают на интегрирующую цепь R4C4, преобразующую их в постоянное напряжение, которое прямо пропорционально частоте вращения коленчатого вала. Это напряжение заряжает времязадающий конденсатор С2 октанкорректора.

Таким образом, при увеличении частоты вращения коленчатого вала пропорционально сокращается время зарядки времязадающего конденсатора до напряжения переключения логического элемента DD1.4 и, соответственно, уменьшается время задержки, вносимой электронным октан-корректором. Требуемая зависимость изменения зарядного напряжения от частоты обеспечивается установкой начального напряжения на конденсаторе С4, снимаемого с движка резистора R3, а также регулировкой длительности выходных импульсов одновибратора резистором R2.

Кроме этого, в октан-корректоре [2] сопротивление резистора R4 необходимо увеличить с 6,8 до 22 кОм, а емкость конденсатора С2 уменьшить с 0,05 до 0,033 мкФ. Левый по схеме вывод резистора R6 (Х1) отключают от плюсового провода и подключают к общей точке конденсатора С4 и резистора R4 добавляемого узла. Напряжение питания на октан-корректор подают с параметрического стабилизатора R5VD2 добавочного узла.

Октан-корректор с указанными доработками обеспечивает регулировку задержки момента зажигания, эквивалентную изменению УОЗ в пределах 0. -10 град. относительно значения, установленного механическим октанкорректором. Характеристика работы устройства при тех же начальных условиях, что и в приведенном выше примере, представлена на рис. 1 кривой 3.

При максимальном времени задержки момента зажигания погрешность поддержания УОЗ в интервале частоты вращения коленчатого вала 1200. 3000 мин -1 практически отсутствует, при 900 мин -1 не превышает 0,5 град., а в режиме холостого хода — не более 1,5. 2 град. Задержка не зависит от изменения напряжения бортовой сети автомобиля в пределах 9. 15 В.

Доработанный октан-корректор сохраняет способность обеспечивать искрообразование при снижении питающего напряжения до 6 В. Если требуется расширить диапазон регулирования УОЗ, рекомендуется увеличить сопротивление переменного резистора R6.

Предлагаемое устройство отличает от подобных, описанных в [3; 4], схемная простота, надежность работы, а также возможность сопряжения практически с любой системой зажигания.

В добавочном узле использованы постоянные резисторы МЛТ, подстроечные резисторы R2, R3 — CП5-2, конденсаторы С1-C3 — КМ-5, КМ-6, С4 — К52-1Б. Стабилитрон VD2 необходимо подобрать с напряжением стабилизации 7,5. 7,7 В.

Детали узла размещены на печатной плате из фольгированного стеклотекстолита толщиной 1. 1,5 мм. Чертеж платы показан на рис. 3.

Плата узла прикреплена к плате октан-корректора. Все устройство в сборе лучше всего смонтировать в отдельном прочном кожухе, укрепляемом вблизи блока зажигания. Необходимо позаботиться о защите октан-корректора от влаги и пыли. Его можно выполнить в виде легкосъемного блока, устанавливаемого в салоне автомобиля, например, на боковой стенке внизу, слева от места водителя. В этом случае, при снятом октан-корректоре, электрическая цепь зажигания окажется разомкнутой, что, по крайней мере, сильно затруднит запуск двигателя посторонним лицом. Таким образом, октан-корректор дополнительно будет выполнять функцию противоугонного устройства. С этой же целью целесообразно применить регулировочный переменный резистор СП3-30 (R6) с выключателем, размыкающим электрическую цепь этого резистора.

Для налаживания устройства потребуется источник питания напряжением 12. 15 В, любой низкочастотный осциллограф, вольтметр и генератор импульсов, который можно выполнить так, как указано в [1]. Сначала временно отключают входную цепь таймера DA1, а движок резистора R3 устанавливают в нижнее (по схеме) положение.

На вход октан-корректора подают импульсы частотой 40 Гц и, подключив осциллограф к его выходу, резистором R3 постепенно увеличивают напряжение на конденсаторе С4 до появления выходных импульсов. Затем восстанавливают входную цепь таймера, подключают осциллограф к его выводу 3 и резистором R2 устанавливают длительность выходных импульсов одновибратора равной 7,5. 8 мс.

Снова подключают осциллограф, переведенный в режим внешней синхронизации со ждущей разверткой, запускаемой входными импульсами (лучше всего использовать простейший двуканальный коммутатор), к выходу октанкорректора и резистором R6 устанавливают время задержки выходного импульса 1 мс. Увеличивают частоту генератора до 80 Гц и резистором R2 устанавливают время задержки 0,5 мс.

Проверив после этого длительность задержки импульсов на частоте 40 Гц, регулировку при необходимости повторяют до тех пор, пока длительность на частоте 80 Гц не будет точно в два раза меньше, чем на частоте 40 Гц. При этом следует иметь в виду, что для обеспечения стабильной работы одновибратора до частоты срабатывания узла выключения задержки момента зажигания (100 Гц) длительность его выходных импульсов не должна превышать 9,5 мс. Фактически в налаженном устройстве она не превышает 8 мс.

Затем частоту генератора уменьшают до 20 Гц и измеряют получаемую при этой частоте задержку входного импульса. Если она не менее 1,6. 1,7 мс, то налаживание заканчивают, регулировочные винты подстроечных резисторов фиксируют краской, а плату, со стороны печатных проводников, покрывают нитролаком. В противном случае резистором R3 немного уменьшают начальное напряжение на конденсаторе С4, увеличивая время задержки до указанной величины, после чего проверяют и, если необходимо, снова выполняют регулировку на частоте 40 и 80 Гц.

Не следует стремиться к строгой линейности частотной зависимости времени задержки на участке ниже 40. 30 Гц, поскольку это требует значительного уменьшения начального напряжения на конденсаторе С4, что может привести к пропаданию импульсов зажигания на самых малых оборотах коленчатого вала или неустойчивой работе системы зажигания при запуске двигателя.

Небольшая остаточная погрешность, выраженная в некотором уменьшении времени задержки зажигания на начальном участке (см. кривую 3 на рис.1), оказывает скорее положительное, нежели отрицательное воздействие, поскольку (автолюбители это хорошо знают) на малых оборотах двигатель работает устойчивее при несколько более раннем зажигании.

Наладить устройство с вполне приемлемой точностью можно и без осциллографа. Делают это так. Сначала проверяют работоспособность добавочного узла. Для этого движки резисторов R2 и R3 устанавливают в среднее положение, к конденсатору С4 подключают вольтметр, включают питание устройства и подают на вход октан-корректора импульсы частотой 20. 80 Гц. Вращая движок резистора R2, убеждаются в изменении показаний вольтметра.

Затем возвращают движок резистора R2 в среднее положение, а резистор R6 октан-корректора переводят в положение максимального сопротивления. Отключают генератор импульсов, и резистором R3 устанавливают на конденсаторе С4 напряжение 3,7 В. Подают на вход октан-корректора импульсы частотой 80 Гц и резистором R2 устанавливают на этом конденсаторе напряжение 5,7 В.

В заключение снимают показания вольтметра на трех значениях частоты — 0, 20 и 40 Гц. Они должны быть соответственно 3,7, 4,2 и 4,7 В. При необходимости регулировку повторяют.

Подключение доработанного октанкорректора к бортовой системе автомобилей различных марок никаких особенностей по сравнению с описанным в [2, 5, 6] не имеет.

После монтажа октан-корректора на автомобиль, запуска и прогревания двигателя движок резистора R6 перемещают в среднее положение и механическим октан-корректором устанавливают оптимальный УОЗ, как это указано в инструкции по эксплуатации автомобиля, т. е. добиваются незначительной, кратковременной детонации двигателя при резком нажатии на педаль акселератора во время движения машины на прямой передаче со скоростью 30. 40 км/ч. На этом все регулировки заканчивают.

Трехлетняя эксплуатация доработанного автором октан-корректора на автомобиле ГАЗ-2410, укомплектованном блоком зажигания 1302.3734-01 с магнитоэлектрическим датчиком, показала заметное улучшение ходовых качеств машины .

  1. Сидорчук В. Электронный октан-корректор. — Радио, 1991, № 11, с. 25, 26.
  2. Адигамов Э. Доработка октан-корректора. — Радио, 1994, № 10, с. 30, 31.
  3. Бирюков А. Цифровой октан-корректор. — Радио, 1987, № 10, с. 34 — 37.
  4. Беспалов В. Корректор угла ОЗ. — Радио, 1988, № 5, с. 17, 18.
  5. Об использовании устройства с коммутатором 36.3734. (Наша консультация). — Радио, 1995, № 12, с. 59.
  6. Киселев А. Еще раз об октан-корректоре. — Радио, 1996, № 6, с. 50.

Автор: К.Куприянов, г.Санкт-Петербург

Вообще говоря, изменение установленного угла опережения зажигания нужно рассматривать как меру временную и вынужденную, в частности, при необходимости использовать бензин с октановым числом, не соответствующим паспортным характеристикам двигателя автомобиля. В настоящее время, когда качество горючего, которое мы заливаем в бак своей машины, стало, мягко говоря, непредсказуемым, такой прибор, как электронный октан-корректор, просто необходим.

Как совершенно справедливо замечено в статье К. Куприянова, при введении в действие октан-корректора, описанного в [1]. происходит постоянное по времени запаздывание момента зажигания, пропорциональное в угловом исчислении увеличению частоты вращения коленчатого вала двигателя с последующим скачкообразным увеличением угла ОЗ. Хотя на практике это явление почти незаметно, внутренние резервы исходного устройства позволяют частично устранить упомянутое запаздывание. Для этого в устройство [2] достаточно ввести транзистор VT3, резисторы R8. R9 и конденсатор С6 (см схему на рис. 1).

(нажмите для увеличения)

Алгоритм работы октан-корректора качественно проиллюстрирован графиками, показанными на рис. 2. Моментам размыкания контактов прерывателя соответствуют плюсовые перепады напряжения — от низкого уровня к высокому — на входе октан-корректора (диагр. 1). В эти моменты происходит быстрая разрядка конденсатора С1 почти до нуля через открывающийся транзистор VT1 (диагр. 3). Заряжается конденсатор сравнительно медленно через резистор R3.

Как только напряжение на заряжающемся конденсаторе С1 достигнет порога переключения логического элемента DD1.2. он переходит из единичного состояния в нулевое (диагр. 4), a DD1.3 — в единичное. Открывающийся в этот момент транзистор VT2 быстро разряжает конденсатор С2 (диагр. 5) до уровня, практически определяемого напряжением на базе транзистора VT3. Поскольку задержка переключения элемента DD1.2 не зависит от частоты вращении, среднее напряжение на его выходе увеличивается с увеличением частоты. Конденсатор С6 усредняет это напряжение.

Последующая зарядка конденсатора С2 через резистор R6 начинается именно с указанного уровня в момент закрывания транзистора VT2. Чем ниже начальный уровень, тем дольше будет заряжаться конденсатор до момента переключения элемента DD1.4, а значит, больше задержка искрообразования (диагр. 6).

Получаемая при этом характеристика угла OЗ показана на рис. 3, аналогичном рис. 1 в статье К. Куприянова, в виде кривой 4. При тех же начальных условиях (tзад = 1 мс при N = 1500 мин-1) погрешность регулирования в наиболее часто употребляемом при езде интервале частоты вращения коленчатого вала двигателя от 1200 до 3000 мин-1 не превышает 3 град.

Следует отметить, что работа этого варианта октан-корректора существенно зависит от скважности входных импульсов. Поэтому для его налаживания рекомендуется собрать формирователь импульсов по схеме на рис. 4. Как известно, импульсы с датчика Холла автомобиля ВАЗ-2108 и его модификаций имеют скважность, равную 3, а угол замкнутого состояния контактов φзс контактного прерывателя вазовских автомобилей равен 55 град., т. е. скважность импульсов с прерывателя "шестерки" Q = 90/55= 1,63.

Чтобы можно было применять один и тот же формирователь импульсов для налаживания октан-корректоров разных моделей автомобилей с небольшой лишь корректировкой скважности, для контактной системы зажигания пересчитывают скважность с учетом инвертирования: Qинв = 90/(90 — φзс). или для ВАЗ-2106 Qинв = 90/(90 — 55)=2.57. Подбирая число диодов формирователя и синусоидальное напряжение генератора сигналов, получают необходимую скважность импульсов на входе октан-корректора. В моем практическом варианте для получения скважности 3 понадобилось четыре диода при амплитуде сигнала генератора 5.7 В.

Кроме указанных, для формирователя подойдут диоды серий Д220. Д223, КД521, КД522 и транзистор КТ315 с любым буквенным индексом. Можно применить формирователь импульсов заданной скважности и по другой схеме.

Корректор для автомобиля ВАЗ-2108 (вставлена перемычка Х2.3 на рис. 1) налаживают следующим образом. Вместо делителя R8R9 временно подключают любой переменный резистор группы А сопротивлением 22 кОм (движком к базе транзистора VT3). Сначала движок резистора устанавливают в то крайнее положение, в котором база транзистора "заземлена". К входу корректора подключают формирователь, а к выходу — осциллограф.

Включают питание корректора и устанавливают частоту генератора 120 Гц со скважностью выходных импульсов формирователя, равную 3. Подбирают резистор R3, добиваясь отключения задержки на этой частоте. Затем уменьшают частоту генератора до 50 Гц и, перемещая движок резистора R6 поочередно в оба крайних положения, определяют максимальное время задержки момента зажигания, вносимое октан-корректором (в нашем случае 1 мс). Увеличивают частоту генератора до 100 Гц и находят такое положение движка временного переменного резистора, в котором максимальная задержка момента зажигания, устанавливаемая резистором R6. равна половине максимальной — 0.5 мс.

Теперь целесообразно снять график зависимости времени задержки момента зажигания от частоты генератора при найденном положении движка временного переменного резистора Пересчитывают частоту вращения вала двигателя в мин-1: N = 30f. где f — частота генератора. Гц. Угол ОЗ φоз = 6N·t, где t — время задержки, мс. Результирующий угол φрез оз = 15 — φоз (см. таблицу) наносят на график рис. 3.

По форме полученный график не должен сильно отличаться от кривой 4, хотя числовые значения могут быть и другими в зависимости от максимального времени задержки. Если необходимо, повторно выполняют операцию регулировки.

По завершении налаживания отключают временный переменный резистор и, измерив сопротивление его плеч, впаивают постоянные резисторы с номиналами, ближайшими к измеренным. Необходимо отметить, что характеристику регулирования можно существенно изменять, варьируя номиналы резистора R3 (частоту отключения задержки), делителя R8R9 и конденсатора С6. Начальные условия описанной регулировки выбраны для сравнения с вариантом, выбранным К. Куприяновым: N = 1500 мин-1, t = 1 мс, φмок = +15 град. (φмок — угол, установленный механическим октан-корректором).

Для использования на автомобиле ВАЗ-2106 октан-корректор налаживают аналогично (с перемычкой Х2.3), но импульсы от формирователя должны иметь скважность 2.57. Перед установкой корректора на автомобиль перемычку Х2.3 меняют на Х2.2.

Для доработки октан-корректора [2] его плату извлекают из коммутатора 3620.3734 и навесным монтажом припаивают транзистор VT3 и конденсатор С6 с таким расчетом, чтобы плату можно было установить на старое место. Подобранные резисторы R8 и R9 припаивают на плату. Транзистор V13 и конденсатор С6 следует фиксировать клеем "Момент" или ему подобным.

Вместо КТ3102Б подойдет любой транзистор этой серии. Конденсатор С6 — К53-4 или любой танталовый либо оксиднополупроводниковый, подходящий по размерам и номиналу.

  1. Сидорчук В. Электронный октан-корректор. — Радио. 1991. № 11. с. 25, 26.
  2. Адигамов Э. Доработка октан-корректора. — Радио. 1994 № 10 с. 30, 31.

Автор: Э.Адигамов, г.Ташкент, Узбекистан

Смотрите другие статьи раздела Автомобиль. Зажигание.

Читайте и пишите полезные комментарии к этой статье.

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ

ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ

Кому не знакомо: отъехал от колонки, надавил на педальку, а из-под капота — дзынь, дзынь.

«Дзынь-дзынь» по-ученому называется детонацией — это подтвердит любой учебник. Насчет более точного определения мнения расходятся — одни говорят о быстром горении, других устраивает пресловутый «стук пальцев». Однако есть и другая точка соприкосновения — все солидарны в том, что ездить на дрянном бензине нельзя. Но. не выливать же! Да и где гарантия, что на соседней колонке нальют получше? Остается одно — поднять капот и сдвинуть трамблер. Или. а вот насчет «или» мы сейчас и поговорим.

Октан-корректор — явление национальное: что-то вроде замполита в армии. Современному двигателю, заправленному нормальным топливом, такие помощники не нужны — но где же среднему соотечественнику взять и то, и другое?

Зато есть «третье» — тот самый корректор. На фото представлены шесть разноименных изделий, позволяющих управлять углом опережения зажигания с места водителя.

Все представленные октан-корректоры имеют несложную электронную начинку, большей частью основанную на публикациях радиолюбительских изданий. Поэтому свою основную задачу — дистанционное управление опережением зажигания — они выполняют довольно просто: ЗАДЕРЖИВАЮТ сигнал от датчика, будь то механический прерыватель или бесконтактный. Чем сильнее повернута ручка потенциометра, тем больше задержка — вот и все. А поскольку величина вносимой задержки зависит еще и от частоты вращения коленвала, то поворот регулятора равносилен повороту корпуса распределителя. Уменьшить угол опережения таким способом, естественно, нельзя — отрицательных задержек не бывает. Поэтому большинство изготовителей (кроме № 5) предлагают сначала все-таки нырнуть под капот и установить заведомо раннее зажигание, после чего возвратить его к номиналу посредством электроники. При этом создается иллюзия, будто октан-корректор способен регулировать угол опережения как «в плюс», так и «в минус».

Вносимая корректорами задержка не превышает нескольких миллисекунд. Этого с лихвой хватает, чтобы регулировать угол опережения в пределах до 12–16° по коленвалу во всех режимах, кроме пуска — там нужны задержки на порядок больше. Поэтому упомянутый выше поворот корпуса распределителя обязательно приведет к излишне раннему зажиганию при прокрутке стартером.

Впрочем, во всем могут быть свои плюсы. Обратимся к таблице, в которой отмечены дополнительные особенности октан-корректоров. Изделия № 3 и 6 снабжены выключателями, позволяющими оперативно «восстанавливать статус-кво». Это может пригодиться при отказе изделия, а также при переходе с бензина на газ.

О пуске двигателя — разговор особый. Создатели изделий № 1, 2, 3 и 5 предлагают пользоваться разнообразными многоискровыми режимами — для пуска мотора, для сушки промокших свечей, для езды с неисправным датчиком и т. п. Нужны эти режимы или нет — решать потребителю. Наши соображения изложены в «Размышлениях эксперта». Отметим лишь, что с утверждением создателей изделия № 5 о неограниченности пробега в режиме асинхронного искрообразования согласиться решительно нельзя — крайне раннее зажигание до добра не доведет.

Вернемся к тому, с чего начали — к детонации. Все исследуемые изделия действительно позволяют управлять углом опережения зажигания, но пользоваться ими нужно весьма аккуратно. Установка позднего зажигания поможет несколько ослабить «звяканье» под капотом, но только ценой потери динамики и увеличения расхода топлива. Более того, на высоких частотах вращения повысится температура отработавших газов, а потому выпускные клапаны долго не протянут.

По той же причине не следует доверять рекомендациям производителей № 1–5 по установке угла опережения зажигания. Резкие нажатия акселератора на прямой передаче с последующим прослушиванием детонационных стуков хороши только для двигателей, заправленных «родным» бензином. Попытки избавиться подобным образом от детонации при дрянном топливе могут привести к такому позднему зажиганию, что догорать смесь будет не в камере, а в выпускном коллекторе.

Вывод прост — устанавливать октан-корректор с целью постоянного перехода на дешевый бензин категорически нельзя. Эти изделия призваны всего лишь облегчить страдания мотора, заправленного не тем, чем надо. Даже современные системы управления, оснащенные датчиками детонации и мощными контроллерами, не допускают работы на низкооктановых бензинах — что же тогда хотеть от простеньких «крутилок»?

Электронное зажигание с октан-корректором и многоискровым режимом ULTRON 1201. Производитель — фирма «Аврора», Санкт-Петербург. Выпускает вариант под «классику» ВАЗ — модификация для датчиков Холла в стадии разработки. Цена 50–200 руб.

Внешний вид изделия изысканным не назовешь — то же относится к внутренностям, несмотря на мощный транзистор зарубежного производства. Вместо традиционного тумблера, включающего многоискровой режим, использован переменный резистор с выключателем. Кстати, число искр в пачке обратно пропорционально частоте вращения коленвала.

Октан-корректор с многоискровым режимом «Мультитроникс-SG». Производитель — фирма «M-Electronics», Москва. Только для систем с механическим прерывателем. Цена 180–200 руб.

Смотрится неплохо, особенно издали. Многоискровой режим включается кнопкой — он рекомендуется для пуска холодного двигателя. Чем выше обороты, тем меньше искр в каждой пачке.

Октан-корректор с многоискровым сервисным режимом «Импульс». Производитель — фирма «Берта Грин», координаты не указаны. Представляет собой приставку к стандартному коммутатору «Самары». Цена 200 руб.

Изделие приятно взять в руки. При подключении достаточно снять разъем с коммутатора и подсоединить его через переходник октан-корректора. Не искажает параметры штатной системы зажигания и может быть отключен полностью. Умеет организовывать многоискровой режим.

Электронное плазменное зажигание с корректором детонации двигателя «Сонар». Производитель — фирма «Деметра», Санкт-Петербург. Создавалось для «классических» систем зажигания с механическим прерывателем. Цена 310 руб.

Насчет плазмы питерцы погорячились, хотя блок зажигания сам по себе имеет хорошие параметры. Разряд — мощный, контакты — разгружены. Жаль, что дизайн внутрисалонного блока октан-корректора явно подкачал.

Система электронного зажигания с октан-корректором VL-11. Производитель — фирма «Ватерлайн», Москва. Работает с механическими прерывателями, а также с магнитоэлектрическими датчиками (вариант VL-21). Цена 380 руб.

Дизайн — никакой. Октан-корректор явно просится куда-то под панель приборов — крутить рукоятку без шкалы можно и на ощупь. На задней стенке есть полезный тумблер: он позволяет полностью отключить изделие — например, при переходе на газ.

Многоискровое электронное зажигание (коммутатор одноканальный) «Пульсар». Производитель — фирма «СМАК», Тольятти. Существует в разных обличьях — для механических прерывателей, для датчиков Холла, для магнитоэлектрических датчиков. Цена 250–450 руб.

Состоит из двух частей — оригинального коммутатора и собственно корректора. Элементная база и конструктивное исполнение коммутатора хуже, чем у серийных вазовских изделий. Предусмотрен многоискровой режим.

Режим асинхронного искрообразования — штука древняя и, вообще говоря, неправильная, но живучая. Даже такие солидные «звери», как ЗИЛ-131 или «Урал-375Д», возят под капотами аварийные вибраторы типа РС331 — своего рода реле, запитанные через собственные контакты. Вибратор призывался на помощь при отказе штатного зажигания и действовал очень просто: реле сработало — контакты разомкнулись, выключилось — опять замкнулись. В результате система «дребезжала» частотой 250–400 Гц, заставляя катушку зажигания вырабатывать сноп искр, направляемый «куда бог пошлет» — в зависимости от положения бегунка. Последствия очевидны — крайне раннее зажигание, обратные удары и все такое. Поэтому езда в таком режиме допустима только в крайнем случае, когда «назад пятьсот — пятьсот вперед», а помощи ждать неоткуда.

Многоискровой режим некогда был последним писком моды — вспомним популярные системы зажигания типа «Искра-5», «Старт» или «Электроника — 3М-К». С годами ситуация изменилась — при разработке новых коммутаторов серия коротких разрядов была единодушно признана бесполезной и уступила место мощному «герою-одиночке». Тем не менее в режиме холодного прокручивания помощь не повредит — дополнительные искровые разряды могут увеличить вероятность воспламенения смеси и облегчить пуск заупрямившегося двигателя.

Режим «сушки» свечей заключается в том, что при выключенном двигателе система зажигания нагружается персонально на «промокший» элемент — например, на свечу. Затем включается «многоискровость». Далее мнения экспертов сильно расходятся — одни считают, что серия искровых разрядов действительно заставит влагу испариться, другие убеждены, что дополнительных повреждений при этом не избежать. Пожалуй, лучше все же не рисковать и сушить промокшие элементы традиционными способами.

#1 toretto-s

  • Пользователи
  • 256 сообщений
  • Регистрация 27-Апрель 08
  • #2 Alexhunter

  • Пользователи
  • 344 сообщений
  • Регистрация 30-Август 07
  • У меня стояло ЭЗ есчё совковое с октанкоректором.
    Работало отлично, за контакты вообще забыл.
    В салоне стоял переменный резистор, которым выставлялся угол опережения зажигания. До 3000об/мин работал в ручном режиле, далее в автоматическом. На 76 бензине ехала тупо, но без детонации.
    Однако сейчас уже такая система устарела.

    Летом поставил БСЗ и взял у брата АД5. Он имеет датчик детонации, как на инжекторах. При появлении детонации, через 3-4 сек, АД5 автоматически делал зажигание позже. Прибор работал, но пока настроил задолбался. Постоянно прислушивался к шуму двигателя, а тут ещё ямы, а также другие шумы. Вскоре отдал брату.
    Хотел купить АД5+ (он вместе с коммутатором), но надо заказывать, ждать и цена была 250грн.
    На рынке на Ж/д нашел случайно комутатор АСТРО с датчиком детомации за 160грн. И купил.
    Поставил и доволен. Настройка аналогична АД5, но по моему работает лучше.

    Ощущения:
    — немного упала резвость
    — можно реже переключать передачи ( для ленивых )
    — к качеству бензина менее требователен
    — двигатель стал работать мягче
    — удобно выставлять зажигание по индикаторам на коммутаторе.

    #3 SergeyRomanov

  • Пользователи
  • 148 сообщений
  • Регистрация 08-Июнь 08
  • У меня АД5+ — купил, точнее заказал сегодня на сегодня. Поставил на БСЗ в течении 1 минуты (там замена комутатора и сопсно вкрутить в тело движка (я вкрутил под карб) сам датчик). ЭТО ВСЁ! Поэтому когда прочитал предыдущий пост — сильно удивился 😯 там ещё что-то настраивать надо? Машина тутже стала лучше брать на низах, с "пониманием" относиться к некачественному бензину, но если 92-й не бодяженый, то рвёт как положено, главное не перегазовывать.

    Но симптомы описанные в первом посте, скорее похожи на более глобальные проблемы. Думаю следует пройти диагностику у карбюраторщика с зажигальщиком, ну и к мотористу на предмет клапанов и распредвала заглянуть. В целом ничего страшного и всё решаемо. 😉