Кислородный датчик в автомобиле

0
936

Содержание

Одна из острейших проблем, с которой сталкиваются современные автопроизводители, – экологическая безопасность. Массовое использование автомобилей в повседневной жизни грозит ростом загазованности современных городов. Для уменьшения количества токсичных веществ, содержащихся в составе выхлопных газов, используются специальные системы их очистки, так называемые каталитические нейтрализаторы, для обеспечения последним необходимых условий работы применяется кислородный датчик.

На что влияет кислородный датчик?

Работа ДВС сопровождается выделением выхлопных газов (ВГ), содержащих вредные для человека вещества. Их значительная концентрация влияет на самочувствие и здоровье окружающих. Среди этих токсичных веществ необходимо особо отметить угарный газ, не полностью сгоревшие углеводороды и окислы азота. Чтобы уменьшить их содержание в составе ВГ, как уже отмечалось, на современных автомобилях используется каталитический нейтрализатор.

Однако у него есть особенность – он успешно работает в достаточно ограниченном диапазоне соотношения кислорода и бензина, и если смесь обогащенная, или наоборот, слишком бедная, то содержание в составе ВГ токсичных веществ остается высоким. Вот кислородный датчик и участвует в обеспечении необходимого соотношения кислорода и бензина.

Содержание токсичных веществ зависит от степени сгорания топливовоздушной смеси (ТВС) и ее состава. Если в ней мало бензина, она называется обедненной, если много – обогащенной. Однако понятие «много или мало» достаточно неопределенное и не может использоваться для управления составом ТВС. Вот для устранения этой неопределенности и нужен кислородный датчик, у него есть ещё одно название – лямбда зонд.

С его помощью контроллер управления двигателем отслеживает процесс сгорания ТВС, для чего измеряется в ВГ содержание кислорода. При необходимости изменяется состав ТВС таким образом, чтобы обеспечить полное сгорание топлива и уменьшить выделяемое количество токсичных веществ.

Как работает кислородный датчик?

На сегодняшний день существует лямбда зонд трех разновидностей:

Наиболее распространенными из них являются первые два типа. Свое название они получили от используемого материала, и соответственно, принцип работы кислородного датчика из-за этого у них разный.

Циркониевый датчик кислорода

Как устроен подобный лямбда зонд, изображено на рисунке.

Конструктивно он может быть выполнен по-разному, либо цилиндрический (пальчиковый), либо пластина (планарный датчик). По сути дела, это слоистая структура, внутренняя и наружная поверхности которой выполнены из платины и разделены слоем специальной керамики. Она защищена снаружи корпусом с отверстиями для поступления ВГ к платиновой поверхности кислородного датчика и имеет связь с наружным воздухом.

При своей работе лямбда зонд контролирует содержание кислорода в составе ВГ, для чего его надо располагать в потоке этих газов. Принцип, по которому он работает, чем-то напоминает аккумулятор, только твердотельный. При достаточно высоких температурах (не ниже трехсот градусов) через керамику, разделяющую слои платины, начинают проходить ионы кислорода. Их содержание в окружающем воздухе и в составе ВГ разное, вследствие чего между слоями датчика появляется разность потенциалов.

Именно она и есть тот сигнал, что лямбда зонд выдает контроллеру управления двигателем. На его величину влияет содержание кислорода в ВГ. Получив эти данные, контролер отвечает тем, что изменяет ТВС, уменьшая или увеличивая количество впрыскиваемого бензина. Вот для чего нужен лямбда зонд, с его помощью контроллер определяет, насколько полностью сгорает ТВС, и подбирает ее оптимальный состав, обеспечивая при этом эффективность работы ДВС и его топливную экономичность.

Описанный принцип работы, основанный на движении ионов кислорода, реализуется при температурах от трехсот до девятисот градусов, поэтому и помещают лямбда зонд в выхлопную систему автомобиля.

Титановый датчик кислорода

Принцип работы, который использует такой датчик, совсем другой. В этом случае применяется зависимость проводимости диоксида титана от парциального давления кислорода в смеси газов. Чем больше содержание кислорода в составе ВГ, тем хуже лямбда зонд проводит электрический ток. Его выходное напряжение пропорционально количеству кислорода и изменяется скачкообразно.

Кислородный датчик подобного типа работает при температуре от семисот градусов, и для него не требуется эталонный воздух.

Широкополосный датчик

Он в обычных машинах используется довольно редко, его отличает совершенно другой принцип работы. У него имеются две специальные камеры – измерительная и камера накачки. Если предыдущие типы датчиков генерировали высокое либо низкое напряжение на выходе в зависимости от содержания кислорода в составе ВГ, то широкополосный датчик выдает напряжение, пропорциональное его значению.

Про эксплуатацию датчика

Лямбда зонд – неразборная конструкция и рассчитана на пробег до восьмидесяти тысяч километров. Правда, этот показатель может значительно уменьшиться при нарушении правил эксплуатации.
Среди них стоит отметить:

  • использование этилированного бензина или других видов топлива, не предусмотренных изготовителем;
  • перегрев датчика;
  • многократные неудачные запуски двигателя;
  • попадание на корпус датчика эксплуатационных автомобильных жидкостей или моющих средств;
  • замыкание на «массу», а также плохой контакт выходной цепи.

Могут быть и другие причины, вызывающие отказ датчика, но и уже приведенных достаточно для понимания, что это хрупкое изделие и требует в процессе работы бережного отношения. Полностью проверить датчик с необходимой степенью достоверности можно, воспользовавшись осциллографом.
Однако результаты работы датчика видны невооруженным взглядом по ряду признаков:

  1. увеличение расхода топлива;
  2. увеличение содержания окиси углерода в составе ВГ;
  3. ухудшение динамики машины;
  4. неустойчивая работа мотора.

Причин отказов датчика может быть несколько, но независимо от них ремонт для него не предусмотрен, только замена.

Лямбда зонд в современных автомобилях контролирует количество кислорода в составе ВГ. Он также осуществляет выдачу данных в контроллер управления двигателем с целью изменения состава ТВС для полного сгорания смеси и обеспечения необходимых условий работы нейтрализатора.
" alt="">

На автомобилях с электронным зажиганием для ограничения выброса вредных веществ в атмосферу устанавливают лямбда зонд, который реагирует на содержание углекислоты и других опасных примесей. Свое название этот элемент получил по букве греческого алфавита, которая выбрана для обозначения коэффициента избытка воздуха в топливовоздушной смеси.

Устанавливают кислородный датчик в магистрали выхлопа. Зная, что такое лямбда зонд в автомобиле и как он устроен, можно выбрать оптимальное решение при обнаружении неполадок.

Что такое лямбда зонд в машине и для чего он нужен

Назначение лямбда-зонда — контроль уровня вредных примесей в выхлопных газах. Этот элемента позволяет поддерживать содержание углекислоты в пределах 0,2 – 0,3 %. Основная функция — подача электрического сигнала в электронный блок управления силового агрегата. Это единственное, на что влияет лямбда зонд, но роль датчика нельзя преуменьшать.

Установкой кислородных датчиков в выхлопной трубе нового автомобиля занимается производитель. В дальнейшем при эксплуатации машины рекомендуются визуальная проверка и компьютерное тестирование лямбда-зонда не реже одного раза в год или после 10 – 15 тыс. км пробега. Если компонент будет поврежден или изношен, то придется его заменить. Если не получается замерить содержание кислорода, это может станет причиной поломки двигателя.

Устройство и принцип работы лямбда зонда

Лямбда зонд представляет собой обычный электрический элемент, через который проходят выхлопные газы. Устройство датчика кислорода предполагает наличие внутри корпуса токопроводящего элемента, электродов, сигнального контакта и заземления. Выходной электрический сигнал формируется при изменении напряжения в зависимости от состава выхлопного потока.

Работа датчика основана на принципе сравнения уровня кислорода в отработавших газах и атмосферном воздухе. Установка внутри трубы до и после каталитического нейтрализатора полностью исключает попадание вредных веществ за пределы системы. Электрическая схема в устройстве такого датчика кислорода задействуется только после разогрева до температуры 300 – 400 ºC, что необходимо для появления электропроводимости твердого электролита.

Принцип работы лямбда зонда позволяет выявить даже малейшее превышение норм по опасным веществам. Но даже при заправке горючего высокого качества с минимальным содержанием примесей через 100 – 150 тыс. км пробега датчики кислорода, а часто и катализаторы (нейтрализаторы), приходится менять.

Каких видов бывают лямбда зонды?

Независимо от того, как работает датчик кислорода и в какой части системы он установлен, для получения электрического сигнала о составе выброса внутри предусмотрен твердый электролитический элемент. В зависимости от типа этого компонента различают следующие виды зондов:

  • циркониево-оксидные, способные определить количество воздуха в топливе в относительной величине (больше/меньше);
  • датчики с высокой чувствительностью, способные точно определить соотношение компонентов топливной смеси (Denso);
  • титановые, которые работают без доступа атмосферного кислорода.

На автомобили устанавливают датчики, предназначенные для конкретной марки или модели, а также изделия универсальной конструкции. Последние не комплектуют оригинальным разъемом – его, увы, приходится искать отдельно.

Информацию о составе выхлопа на контроллер подают и датчики других видов, которые отличаются количеством контактов (1- 6), способом установки (резьба/фланец), а также узко- или широкополосные модели по диапазону измерения (до коэффициента 1,6). Все варианты подключаются и работают по аналогичной схеме с передачей сигнала в ЭБУ для корректировки состава топливовоздушной смеси и объема впрыска топлива.

Распространённые причины неисправностей лямбда зонда и способы их устранения

Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:

  • резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
  • ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
  • колебания оборотов холостого хода;
  • значительное снижение мощности при увеличении оборотов;
  • сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
  • движение автомобиля рывками;
  • появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
  • поздний впрыск при нажатии педали.

Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.

Заключение

Даже одна–две заправки топливом низкого качества могут стать причинами выхода из строя лямбда зонда. В таких случаях нарушается работа ЭБУ мотора, что и приводит к сбоям. Чтобы восстановить питание двигателя горючим и устранить неполадки, приходится заменять компонент, поскольку чистка считается малоэффективным способом.

Правильная работа системы впрыска двигателя, а вместе с ней управляемость автомобиля, потребление топлива, токсичность выхлопных газов напрямую зависят от достоверности и качества информации, получаемой от электронных датчиков, использующихся в работе компьютеризированной системы управления двигателем. Один из датчиков в этой системе — датчик кислорода. Его называют датчик «O 2 », датчик «дожига» или лямбда-зонд (O 2 sensor, датчик дожига, датчик кислорода или лямбда-зонд).

На необходимое качество топливной смеси для двигателя влияет множество факторов: температура воздуха, температура охлаждающей жидкости, положение дроссельной заслонки, поток воздуха, нагрузка на ДВС и т. д. Датчики измеряют эти параметры на ВХОДЕ и подают сигнал электронному блоку управления впрыском топлива (ЭБУ), «как дозировать» топливо — воздушную смесь. А датчик кислорода практически единственный видит, что получается на ВЫХОДЕ, так как он определяет концентрацию кислорода в отработавших газах, которая зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Что это значит на практике?

Как работает кислородный датчик
Датчик кислорода установлен в выпускном коллекторе двигателя и проверяет, сколько несгоревшего кислорода находится в выхлопных газах. Электрический сигнал датчика считывается ЭБУ, а тот, в свою очередь, оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива регулированием длительности впрыска топлива форсунками, то есть осуществляется точная подстройка режима работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизации вредных выбросов. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора, поскольку некоторое количество кислорода для нейтрализации вредных газов в катализаторе все же требуется (см. Рис. 1).

Рис. 1. Схема лямбда-коррекции с одним и двумя датчиками кислорода двигателя.
1 — впускной коллектор; 2 — двигатель; 3 — блок управления двигателем; 4 — топливная форсунка; 5 — основной лямбда-зонд; 6 — дополнительный лямбда-зонд; 7 — каталитический нейтрализатор.

Название датчика происходит от греческой буквы λ (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси, то есть отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха (λ=1). Такой состав топливо — воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их «дожигание» в каталитическом нейтрализаторе. Если лямбда будет 1 (избыток воздуха) смесь называют обедненной.

Датчик кислорода — не самостоятельное устройство. Он работает «в связке» с каталитическим нейтрализатором отработанных газов, который предназначен для окисления токсичных веществ (окиси углерода, углеводородов и окиси азота) до углекислого газа, азота и воды в результате каталитической реакции. Оптимальная работа катализатора (нейтрализация примерно 80% всех компонентов) достигается в очень узком диапазоне: наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при λ=1,1-1,3. Максимальная мощность обеспечивается, когда λ=0,85-0,9. Такая точность в двигателях внутреннего сгорания обеспечивается благодаря системе питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда—зонда.

Рабочий элемент кислородного датчика — пористый керамический материал на основе двуокиси циркония, покрытый методом напыления платиной. Выхлопные газы обтекают рабочую поверхность. Датчик реагирует на разницу между уровнем кислорода в выхлопных газах и в атмосфере, вырабатывая на выходе соответствующую разность потенциалов, которая считывается ЭБУ.

Эффективная работа датчика возможна при температуре не ниже 300-3500С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, который сокращает время выхода датчика на рабочую температуру.

Датчики кислорода бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики — без нагревательного элемента, они применялись в самых первых системах впрыска с обратной связью (лямбда — регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. «Земля» этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного «земляного» провода сигнальной цепи.
Трех — и четырехпроводные лямбда зонды снабжены нагревательным элементом. В четырехпроводном лямбда-зонде два провода идут на подогрев, а два — сигнальные.

Взаимозаменяемость кислородных датчиков.
Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы (Например, NGK, BOSCH). Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева, если смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Обратная замена — установка однопроводного датчика вместо трех- и более — проводных не допускается, работать не будет. И, конечно, резьба датчика должна совпадать с резьбой, нарезанной в штуцере.

Возможные неисправности кислородного датчика.
Неисправности и необходимость замены кислородного датчика выявляет только компьютерная диагностика, поскольку не все неисправности фиксируются системой бортовой самодиагностики автомобиля.

Наиболее распространенные неисправности: потеря чувствительности и уменьшение быстродействия. Замедленная реакция датчика неминуемо вызывает увеличенный расход топлива и заметное снижение динамики автомобиля, но система самодиагностики ее не зафиксирует, т.к. данный параметр не отслеживается контроллером.

Потерей чувствительности страдает изрядно послуживший и практически забитый датчик, который выдает слишком низкий выходной сигнал. В этом случае на приборной панели обычно загорается лампочка индикации неисправности «CHECK ENGINE».

При обнаружении неисправности датчика кислорода, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение топливной смеси в сравнении с обычным ее составом. В результате возникает скачок в потреблении топлива и увеличении токсичности выхлопных газов, неустойчивая работа двигателя на холостом ходу, снижение динамических характеристик, но машина при этом, возможно, останется на ходу. Хотя в некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно, и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО Вам, скорее всего, придется добираться на буксире.

Вообще лямбда-зонд — наиболее уязвимый датчик автомобиля с системой впрыска. Ресурс одно- двух- проводных датчиков составляет 40-50 тысяч километров, трех- четырех- проводных — 70-80 тысяч километров пробега, в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо — свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок. Преждевременный выход из строя лямбда-зонда также могут вызвать многократные неудачные попытки запуска двигателя, в результате которых в выпускном трубопроводе скапливаются пары несгоревшего топлива, способного воспламениться с образованием ударной волны; перегрев наконечника датчика, вызванный перебоями в зажигании; нарушения в системе контроля опережения зажигания, когда двигатель продолжительное время работает на переобогащенной топливной смеси; чрезмерной «перегазовкой», когда тахометр находится в «красной зоне».

Возможными признаками выхода из строя кислородного датчика являются: неустойчивая работа двигателя на холостых оборотах, повышенный расход топлива и ухудшение динамики автомобиля, потрескивание и запах гари в районе установки катализатора, а также характерный запах тухлых яиц, присутствующий в выхлопе при попадании в катализатор большого количества несгоревшего топлива.