Детали двигателя внутреннего сгорания

0
673

Содержание

Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы.

Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе

Преподаватель высшей школы, кандидат технических наук

Кузнецов Юрий Александрович

Часть 1. ДВИГАТЕЛЬ И ЕГО МЕХАНИЗМЫ

Двигатель является источником механической энергии.

На подавляющем большинстве автомобилей применяется двигатель внутреннего сгорания.

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Автомобильные двигатели внутреннего сгорания классифицируются:

По роду применяемого топлива:

— легкие жидкие (газ, бензин),

— тяжелые жидкие (дизельное топливо).

Бензиновые карбюраторные. Смесь топлива с воздухом готовится в карбюраторе или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи .

Бензиновые инжекторные Смесеобразование происходит путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок ( инжектор ов). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных же системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ) впрыском, управляющим электрическими бензиновыми вентилями.

Двигатель сжигает в качестве топлива углеводороды, находящиеся в газообразном состоянии. Чаще всего газовые двигатели работаю на пропане, но есть и другие, работающие на попутных (нефтяных), сжиженном, доменных, генераторных и других видах газообразного топлива.

Принципиальное отличие газовых двигателей от бензиновых и дизельных в более высокой степени сжатия. Применение газа позволяет избежать излишнего износа деталей, так как процессы сгорания топливовоздушной смеси происходят более правильно, благодаря исходному (газообразному) состоянию топлива. Также газовые двигатели более экономичны, так как газ стоит дешевле нефти и легче добывается.

К несомненным преимуществам двигателей на газе стоит отнести безопасность и бездымность выхлопа.

Сами по себе газовые двигатели редко выпускаются серийно, чаще всего они появляются после переделки традиционных ДВС, путем оборудования их специальным газовым оборудованием.

Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. Дизельные двигатели являются низкооборотными и характеризуются высоким вращающим моментом на валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием, он не нуждается в электричестве для работы (в автомобильных дизельных двигателях электрическая система используется только для запуска), и, как следствие, менее боится воды.

По способу воспламенения:

— от искры (бензиновые),

— от сжатия (дизельные).

По числу и расположению цилиндров:

Этот двигатель известен с самого начала автомобильного двигателестроения. Цилиндры расположены в один ряд перпендикулярно коленчатому валу.

Достоинство: простота конструкции

Недостаток: при большом количестве цилиндров получается очень длинный агрегат, который невозможно расположить поперечно относительно продольной оси автомобиля.

Горизонтально-оппозитные двигатели отличаются меньшей габаритной высотой, чем двигатели с рядным или V-образным расположением цилиндров, что позволяет снизить центр тяжести всего автомобиля. Легкий вес, компактность конструкции и симметричность компоновки уменьшает момент рыскания автомобиля.

Чтобы уменьшить длину двигателей, в этом двигателе цилиндры расположены под углом от 60 до 120 градусов, при этом продольные оси цилиндров проходят через продольную ось коленчатого вала.

Достоинство: относительно короткий двигатель

Недостатки: двигатель относительно широк, имеет две раздельные головки блока, повышенная стоимость изготовления, слишком большой рабочий объем.

В поисках компромиссного решения исполнения двигателей для легковых автомобилях среднего класса пришли к созданию VR-двигателей. Шесть цилиндров под углом 150 градусов образуют относительно узкий и в целом короткий двигатель. Кроме того, такой двигатель имеет только одну головку блока.

В двигателях W-семейства в одном двигателе соединены два ряда цилиндров в VR-исполнеии.

Цилиндры каждого ряда размещены под углом 150 один к другому, а сами ряды цилиндров расположены под углом 720.

Стандартный автомобильный двигатель состоит из двух механизмов и пяти систем.

— система выпуска отработавших газов.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Кривошипно-шатунный механизм состоит:

— блока цилиндров с картером,

— головки блока цилиндров,

— поддона картера двигателя,

— поршней с кольцами и пальцами,

Является цельнолитой деталью, объединяющей собой цилиндры двигателя. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Отливается как правило — из чугуна, реже — алюминия.

Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло­жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не­большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие­вые сплавы.

Головка блока цилиндров

Является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Поддон картера двигателя

Закрывает снизу картер двигателя (отливается как единое целое с блоком цилиндров) и используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Поршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Поршень подразделяется на три части, выполняющие различные функции:

— направляющая часть (юбка).

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания.

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца.

Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива.

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.

Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Достоинства: Поршни из чугуна прочны и износостойки.

Благодаря небольшому коэффициенту линейного расширения они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра.

Недостатки: Чугун имеет довольно большой удельный вес. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, в которых силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газов на днище поршня.

Чугун имеет низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350—400 °C. Такой нагрев нежелателен особенно в карбюраторных двигателях, так как он служит причиной возникновения калильного зажигания.

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

— малая масса (как минимум на 30 % меньше по сравнению с чугунными);

— высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;

— хорошие антифрикционные свойства.

Шатун — деталь, соединяющая поршень (посредством поршневого пальца ) и шатунную шейку коленчатого вала . Служит для передачи возвратно-поступательных движений от поршня на коленчатый вал. Для меньшего износа шатунных шеек коленчатого вала между ними и шатунами помещают специальные вкладыши, которые имеют антифрикционное покрытие .

Коленчатый вал — деталь сложной формы, имеющая шейки для крепления шатунов , от которых воспринимает усилия и преобразует их в крутящий момент .

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов.

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике , размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала, на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала, соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Массивный диск с зубчатым венцом. Зубчатый венец необходим для запуска двигателя (шестерня стартера входит в зацепление с шестерней маховика и раскручивает вал двигателя). Также маховик служит для уменьшения неравномерности вращения коленчатого вала.

Предназначен для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов.

Основными деталями газораспределительного механизма являются:

— впускные и выпускные клапана.

По расположению распределительного вала выделяют двигатели:

— С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

— С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head).

В современных автомобильных двигателях, как правило, расположен в верхней части головки блока цилиндров и соединён со шкивом или зубчатой звёздочкой коленвала ремнём или цепью ГРМ соответственно и вращается с вдвое меньшей частотой, чем последний (на 4-тактных двигателях).

Составной частью распредвала являются его кулачки , количество которых соответствует количеству впускных и выпускных клапанов двигателя. Таким образом, каждому клапану соответствует индивидуальный кулачок, который и открывает клапан, набегая на рычаг толкателя клапана. Когда кулачок «сбегает» с рычага, клапан закрывается под действием мощной возвратной пружины.

Двигатели с рядной конфигурацией цилиндров и одной парой клапанов на цилиндр обычно имеют один распределительный вал (в случае четырёх клапанов на каждый цилиндр, два), а V-образные и оппозитные — либо один в развале блока, либо два, по одному на каждый полублок (в каждой головке блока). Двигатели, имеющие 3 клапана на цилиндр (чаще всего два впускных и один выпускной), обычно имеют один распредвал на головку блока, а имеющие 4 клапана на цилиндр (два впускных и 2 выпускных) имеют 2 распредвала в каждой головке блока.

Современные двигатели иногда имеют системы регулировки фаз газораспределения, то есть механизмы, которые позволяют проворачивать распредвал относительно приводной звездочки, тем самым изменяя момент открытия и закрытия (фазу) клапанов, что позволяет более эффективно наполнять рабочей смесью цилиндры на разных оборотах.

Клапан состоит из плоской головки и стержня, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапаны делают значительно больше, чем диаметр выпускного. Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные из жаростойкой, так как последние соприкасаются с горючими отработавшими газами и нагреваются до 600 – 800 0 С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок из жаростойкого чугуна, которые называются седлами.

Принцип работы двигателя

Верхняя мертвая точка – крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка – крайнее нижнее положение поршня в цилиндре.

Ход поршня – расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания – пространство между головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра – пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя – сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра – сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия – показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия – давление в цилиндре в конце такта сжатия.

Такт – процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Рабочий цикл двигателя

1-ый такт – впуск . При движении поршня вниз в цилиндре образуется разрежение, под действием которого через открытый впускной клапан в цилиндр поступает горючая смесь (смесь топлива с воздухом).

2-ой такт – сжатие . Поршень под действием коленчатого вала и шатуна перемещается вверх. Оба клапана закрыты и горючая смесь сжимается.

3-ий такт – рабочий ход . В конце такта сжатия горючая смесь воспламеняется (от сжатия в дизельном двигателе, от искры свечи в бензиновом двигателе). Под давлением расширяющихся газов поршень перемещается вниз и через шатун приводит во вращение коленчатый вал.

4-ый такт – выпуск . Поршень перемещается вверх, и через открывшийся выпускной клапан выходят наружу отработавшие газы.

Категория: Авто. | Популярность: 80244 | Оценка: 3.48

Изобретение двигателя внутреннего сгорания позволило человечеству в развитии шагнуть значительно вперед. Сейчас двигатели, которые используют для выполнения полезной работы энергию, выделяемую при сгорании топлива, используются во многих сферах деятельности человека. Но самое большее распространение эти двигатели получили в транспорте.

Все силовые установки состоят из механизмов, узлов и систем, которые взаимодействуя между собой, обеспечивают преобразование энергии, выделяемой при сгорании легковоспламеняемых продуктов во вращательное движение коленчатого вала. Именно это движение и является его полезной работой.

Чтобы было понятнее, следует разобраться с принципом работы силовой установки внутреннего сгорания.

Принцип работы

При сгорании горючей смеси, состоящей из легковоспламеняемых продуктов и воздуха, выделяется больше количество энергии. Причем в момент воспламенения смеси она значительно увеличивается в объеме, возрастает давление в эпицентре воспламенения, по сути, происходит маленький взрыв с высвобождением энергии. Этот процесс и взят за основу.

Если сгорание будет производиться в закрытом пространстве – возникающее при сгорании давление будет давить на стенки этого пространства. Если одну из стенок сделать подвижной, то давление, пытаясь увеличить объем замкнутого пространства, будет перемещать эту стенку. Если к этой стенке присоединить какой-нибудь шток, то она уже будет выполнять механическую работу – отодвигаясь, будет толкать этот шток. Соединив шток с кривошипом, при перемещении он заставит провернуться кривошип относительно своей оси.

В этом и заключается принцип работы силового агрегата с внутренним сгоранием – имеется закрытое пространство (гильза цилиндра) с одной подвижной стенкой (поршнем). Стенка штоком (шатуном) связана с кривошипом (коленчатым валом). Затем производится обратное действие – кривошип, делая полный оборот вокруг оси, толкает штоком стенку и так возвращается обратно.

Но это только принцип работы с пояснением на простых составляющих. На деле же процесс выглядит несколько сложнее, ведь надо же вначале обеспечить поступление смеси в цилиндр, сжать ее для лучшего воспламенения, а также вывести продукты горения. Эти действия получили название тактов.

Всего тактов 4:

  • впуск (смесь поступает в цилиндр);
  • сжатие (смесь сжимается за счет уменьшения объема внутри гильзы поршнем);
  • рабочий ход (после воспламенения смесь из-за своего расширения толкает поршень вниз);
  • выпуск (отведение продуктов горения из гильзы для подачи следующей порции смеси);

Такты поршневого двигателя

Из этого следует, что полезное действие имеет только рабочий ход, три других – подготовительные. Каждый такт сопровождается определенным перемещением поршня. При впуске и рабочем ходе он движется вниз, а при сжатии и выпуске – вверх. А поскольку поршень связан с коленчатым валом, то каждый такт соответствует определенному углу проворота вала вокруг оси.

Реализация тактов в двигателе делается двумя способами. Первый – с совмещением тактов. В таком моторе все такты выполняются за один полный проворот коленвала. То есть, пол-оборота колен. вала, при котором выполняется движение поршня вверх или вниз сопровождается двумя тактами. Эти двигатели получили название 2-тактных.

Второй способ – раздельные такты. Одно движение поршня сопровождается только одним тактом. В итоге, чтобы произошел полный цикл работы – требуется 2 оборота колен. вала вокруг оси. Такие двигатели получили обозначение 4-тактных.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм, входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Цилиндро-поршневая группа

Состоит данная группа из гильз цилиндров, поршней, поршневых колец и пальцев. Именно в этой группе и происходит процесс сгорания и передача выделяемой энергии для преобразования. Сгорание происходит внутри гильзы, которая с одной стороны закрыта головкой блока, а с другой – поршнем. Сам поршень может перемещаться внутри гильзы.

Чтобы обеспечить максимальную герметичность внутри гильзы, используются поршневые кольца, которые предотвращают просачивание смеси и продуктов горения между стенками гильзы и поршнем.

Поршень посредством пальца подвижно соединен с шатуном.

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Система смазки

Система смазки обеспечивает снижение трения между взаимодействующими поверхностями двигателя, путем создания специальной пленки, предотвращающей прямой контакт поверхностей. Дополнительно осуществляет отвод тепла, защищает от коррозии элементы двигателя.

Состоит система смазки из масляного насоса, емкости для масла – поддона, маслозаборника, масляного фильтра, каналов, по которым масло движется к трущимся поверхностям.

Система охлаждения

Поддержание оптимальной рабочей температуры во время работы двигателя обеспечивается системой охлаждения. Используется два вида системы – воздушная и жидкостная.

Воздушная система производит охлаждение путем обдува цилиндров потом воздуха. Для лучшего охлаждения на цилиндрах сделаны ребра охлаждения.

В жидкостной системе охлаждение производится жидкостью, которая циркулирует в рубашке охлаждения с прямым контактом с внешней стенкой гильз. Состоит такая система из рубашки охлаждения, водяного насоса, термостата, патрубков и радиатора.

Система зажигания

Система зажигания применяется только на бензиновых двигателях. На дизелях воспламенение смеси производится от сжатия, поэтому такая система ему не нужна.

У бензиновых же авто, воспламенение выполняется от искры, проскакивающей в определенный момент между электродами свечи накаливания, установленной в головке блока так, что ее юбка находится в камере сгорания цилиндра.

Состоит система зажигания из катушки зажигания, распределителя (трамблера), проводки и свечей зажигания.

Электрооборудование

Обеспечивает это оборудование электроэнергией бортовую сеть авто, в том числе и систему зажигания. Этим оборудование также производится и запуск двигателя. Состоит оно из АКБ, генератора, стартера, проводки, всевозможных датчиков, которые следят за работой и состоянием двигателя.

Это и все устройство двигателя внутреннего сгорания. Он хоть и постоянно совершенствуется, однако принцип работы его не меняется, улучшаются лишь отдельные узлы и механизмы.

Современные разработки

Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.

Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.

Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.

Камера сгорания

Камера сгорания образуется днищем (верхней частью) поршня, нижней частью головки блока цилиндров и стенками цилиндра. В этой замкнутой камере каждый час происходит процесс, равносильный взрыву 32 шашек динамита. Для надежной работы двигателя необходимы точность и прочность деталей.

Поршни и поршневые кольца

Поршень образует нижний край камеры сгорания и передает усилие от сгорания топлива на коленчатый вал (коленвал) посредством шатуна. Поршни бывают различных видов и конструкций. Виды могут отличаться по конструкции юбки поршня, по конструкции головки поршня, по технологическому процессу изготовления поршня и по сорту используемого металла.

Поршневые кольца устанавливаются вокруг верхней части поршня. Они образуют окружность чуть большего диаметра, чем окружность поршня. Когда концы дуги (окружности) встречаются внутри цилиндра, то образуется уплотнение, и это уплотнение удерживает отработанные газы от попадания в картер двигателя, а масло из картера — от попадания в камеру сгорания.

Конструкция юбки

Для поршней используются две основные конструкции юбки. Более старые поршни в двигателях с невысоким числом оборотов имеют полноценные юбки. Эта полноценная юбка увеличивает движущуюся инертность и движущуюся массу двигателя.

Когда коленвалы приобрели противовесы, а обороты двигателя увеличились выше уровня, имеющегося в косилках для газонов, на поршнях появились частичные (облегченные) юбки. Такая частичная юбка уменьшила вес поршня и обеспечила пространство для противовесов коленвала. Почти все современные двигатели используют поршни с частичными юбками. Уменьшенная движущаяся масса поршня с частичной юбкой позволяет увеличить максимальное число оборотов двигателя.

Конструкция головки блока цилиндров

У стандартных поршней обычно плоская головка (днище). Многие высокофорсированные двигатели, особенно предназначенные для гонок, используют поршни с выпуклым днищем. Во многих случаях установка этих выпуклых поршней не является преимуществом, так как они препятствуют распространению фронта пламени в камере сгорания. Когда поршень идет вверх в такте сжатия, выпуклость днища заполняет часть камеры сгорания в головке блока цилиндров.

Это увеличивает степень сжатия. Хотя увеличение степени сжатия увеличивает потенциальную мощность двигателя, при этом есть тенденция увеличения температуры сгорания. Когда температура в камере сгорания превышает значение 1380*С, кислород и азот в камере сгорания образуют окись азота.

Эти соединения являются одними из самых токсичных и тщательно контролируются экологическими нормами. Если вы решили ремонтировать свой двигатель, то проверьте, соответствуют ли выбранные вами поршни необходимым требованиям.

Поршни могут быть литыми или кованными. Кованые поршни являются более прочными, более точно изготовленными, но и более дорогими. По этим причинам они используются в форсированных двигателях высокой мощности.

Поршни двигателей старых автомобилей изготавливались из литого чугуна. Поршни из чугуна соответствуют ненормальной движущейся массе. Эта масса отбирает у двигателя часть мощности и снижает его максимальные обороты.

В 1950-е — 60-е годы в массовом производстве автомобильных двигателей стали использоваться поршни из алюминия. Это позволило повысить максимальные обороты двигателя и уменьшить паразитные потери мощности за счет возвратно-поступательного движения массы поршня.

Типичный поршень не является идеально круглым, как отверстие цилиндра. Он имеет форму эллипса с про-дольной осью, называемой опорной осью, которая перпендикулярна короткой оси, называемой осью поршневого пальца. Такая конструкция поршня называется кулачковой шлифовкой (притиркой) и позволяет термическое расширение поршня вдоль оси поршневого пальца.

Кроме этого, такая конструкция позволяет сжатие опорной оси поршня при такте рабочего хода. Когда выполняются измерения на поршне в процессе разборки, особенности конструкции следует учитывать.

Днище поршня может иметь различные конструкции. Каждая конструкция служит для решения определенных проблем. Для большинства ремонтных операций на двигателе вполне подходит поршень с гладким днищем.

Поршни с выпуклым днищем очень популярны на форсированных двигателях. Выпуклость, однако, влияет на движение фронта пламени и увеличивает степень сжатия. Двигатели с высокой степенью сжатия обычно не очень хорошо работают на стандартном бензине, который предназначен для обычных автомобилей выпуска 90-х годов.

Шатуны

Шатун передает вертикальное усилие, получаемое от сгорания топлива в камере сгорания, и действующее | на поршень, на коленчатый вал. Хотя эти шатуны должны быть прочными, они должны передавать на коленвал как можно меньше своего собственного веса. Проще говоря, шатунам нужно быть легкими и прочными. Эту комбинацию легко оптимизировать; уровень оптимизации увеличивается вместе с ценой шатуна.

Подобно поршням, шатуны могут быть литыми или кованными. Кованые шатуны более прочные и изготовлены точнее, следовательно, они обычно применяются для форсированных двигателей.

Шатуны для обычных автомобилей сделаны из литого чугуна. Такие шатуны соответствуют ненормальной I движущейся массе. Эта масса отбирает у двигателя мощность и максимальные обороты. Гоночные двигатели и 1 другие высокофорсированные двигатели используют алюминиевые шатуны.

В 1950-е — 60-е годы появились алюминиевые I шатуны на форсированных двигателях. Это позволило I повысить максимальное число оборотов и уменьшить! паразитные потери мощности из-за возвратно-поступательного движения шатунов большой массы.

У каждого шатуна есть большой конец и малый конец. Малый конец устанавливается в поршень в том месте, где мощность передается от поршня к шатуну через поршневой палец. Поршневой палец может быть запрессован в шатун и иметь плавающую посадку в поршне или может быть запрессован в поршень и иметь плавающую посадку в конце шатуна, или же может иметь полную плавающую посадку, т.е. плавающая посадка имеется как в поршне, так и в шатуне.

Большой конец шатуна соединен с коленвалом. По внутренней стороне большого конца шатуна расположены сменные вкладыши. Из-за большой нагрузки, приходящейся на вкладыши, они принадлежат к тем деталям двигателя, которые более всего склонны к повреждениям.

Коленчатый вал

Мощность, развиваемая двигателем, передается на трансмиссию с помощью коленчатого вала (коленвала). Можно сказать, что коленвал преобразует возвратно-поступательное движение поршней в цилиндрах во вращательное движение, требуемое для вращения колес авто-мобиля.

Вес около 2000 кг или даже 8000 кг (грузовик) передвигается через металлическую деталь диаметром около 10 см.

Коленвал может быть кованным или литым из различных сплавов. Хотя кованый коленвал обычно прочнее, он и дороже. Литой коленвал более чем подходящий для большинства обычных (не гоночных) применений.

После отливки или ковки поверхности подшипников обрабатываются, а затем шлифуются и полируются. На современных коленвалах используются противовесы, которые балансируют их с весом поршней и шатунов. Дальнейшая балансировка осуществляется с помощью удаления металла с противовесов.

Головка блока цилиндров имеет несколько функций. Она содержит камеры сгорания и обеспечивает подвод для топливовоздушной смеси в камеру сгорания. Кроме этого, головка обеспечивает отвод выхлопных га-зов из камеры сгорания в выпускной коллектор. Каналы для газов открываются и закрываются клапанами. Со времен второй мировой войны эти клапаны располагаются в головке блока цилиндров.

Клапаны и привод клапанов

Клапаны управляют потоками топливовоздушной (рабочей) смеси и выхлопных газов в камеру сгорания и из нее. Впускной клапан открывается всякий раз, когда поршень идет вниз, чтобы втянуть топливо и воздух в камеру сгорания. Выпускной клапан открывается при движении поршня вверх, чтобы отработанные газы были вытеснены из камеры сгорания.

У большинства двигателей всего лишь два клапана на каждый цилиндр: один впускной и один выпускной. В попытках улучшить поток газов через камеру сгорания многие двигатели последних моделей используют по два или даже больше впускных или выпускных клапанов, или обоих видов клапанов в каждом цилиндре. Хотя, на первый взгляд, это делает двигатель более сложным, на самом деле это означает всего лишь большее количество деталей, но не увеличившуюся сложность.

Открывание клапанов на многих двигателях про-изводится с помощью толкателей (штанг) и коромысел. Как можно видеть по старым двигателям времен первой мировой войны, это старый метод, но он остается очень функциональным.

Обычно клапан большего размера является впускным клапаном. Впускной клапан открывается, чтобы впустить воздух и топливо в камеру сгорания. Клапан меньшего размера, называемый выпускным, открывается для выпуска газов после окончания процесса сгорания.

Распределительный вал (распредвал)

Распределительный вал состоит из серии яйцеобразных кулачков, ответственных за открывание и закрывание впускных и выпускных клапанов. В некоторых двигателях распредвал расположен внутри блока цилиндров. Связь между распредвалом и клапанами осуществляется толкателями и штангами.

Многие двигатели имеют распредвал, расположенный поверх клапанов. Распредвал более-менее непосредственно воздействует на клапаны. В таких двигателях единственными деталями, находящимися между распредвалом и клапаном, являются рокер (коромысло). Это исключает необходимость использования толкателей и штанг.

Во многих двигателях нет даже рокеров. Исключение толкателей и штанг сокращает количество деталей двигателя, которые склонны к износу. Кроме этого, возможны более высокие обороты, так как отсутствие штанг исключает потенциальные отрицательные эффекты, которые могут повлиять на приемистость двигателя.

Распредвал приводится в движение от коленвала и синхронизирован с ним. Кулачки распредвала перемещают толкатели вверх и вниз, толкатели перемещают штанги, а штанги приводят в движение коромысла для открывания клапанов. Вообще говоря, чем больше подъем кулачков распредвала, тем большее количество воздуха под действием атмосферного давления может попасть в цилиндр, и чем больше продолжительность открывания, тем больше времени воздух поступает в цилиндр.

Конфигурации распредвала и газораспределительного механизма

Когда гонщик Чак Егер преодолел звуковой барьер на автомобиле в 1947 году, мысли конструкторов двигались вокруг плоских головок блоков цилиндров двигателей. В такой конфигурации клапаны расположены в блоке цилиндров. В 50-е годы в массовое производство было запущено серьезное новшество: двигатель с верхнерасположенными клапанами. Движение клапанов в головке блока цилиндров означает улучшение потоков впускных и выхлопных газов через камеру сгорания.

Хотя двигатели со штангами выпускаются уже очень долго и хотя они очень надежны, новые приоритеты и требования к автомобильным двигателям медленно вытесняют эту конструкцию.

Двигатель с верхнерасположенным распредвалом был разработан в 20-е годы XX века. Исключение штанг обеспечивает лучшее управление клапанами и меньшую инерционность внутри двигателя. Такая конфигурация известна под названием верхнерасположенного распредвала (ОНС).

Некоторые более сложные конструкции двигателей используют отдельные верхнерасположенные распредвалы для впускных и выпускных клапанов. Эта конструкция называется двойным верхнерасположенным распредвалом (DOHC).

Шестерни газораспределительного механизма, цепи и зубчатые ремни

Цепь привода газораспределительного механизма (ГРМ) соединяет распредвал и коленвал и синхронизирует их работу. Показанная здесь цепь имеет обычную конструкцию. Специальные цепи (для форсированных двигателей) имеют роликовую конструкцию. Многие дорогие европейские двигатели использовали роликовые цепи в качестве стандартного оборудования.

Звездочка большего размера является звездочкой распредвала; звездочка меньшего размера является звездочкой коленвала. Смещенная от центра круглая ступица на большой звездочке служит для привода топливного насоса. Такого привода нет на большинстве двигателей с впрыском топлива, так как они используют электрический топливный насос.

Многие двигатели с верхним распределительным валом используют цепь для соединения распредвала и коленвала, но в большинстве двигателей используется зубчатый ремень. Эксплуатация и старение стремятся осла-бить резиновые зубцы ремня, что может привести к повреждениям. Разрыв зубчатого ремня может привести к серьезным повреждениям поршней и деталей привода клапанов, если двигатель работает на высоких оборотах, а на некоторых двигателях — даже на холостом ходу.

Если открытые клапаны имеют отрицательный зазор с поршнем в положении верхней мертвой точки (ВМТ), и если система привода газораспределительного механизма (шестерни/цепь/зубчатый ремень) не обеспечивает правильную синхронизацию распредвала и коленвала (это может случиться при обрыве цепи и ремня), то могут произойти различные повреждения.

Когда поршни встречаются с клапанами, то клапаны гнутся. Если вам повезло, то это все, что случится. Если же вам не повезло, то повреждение зубчатого ремня или приводной цепи выведет из строя головку блока цилиндров, клапаны, поршни и, возможно, блок цилиндров.

Из сказанного следует простой вывод: новый зубчатый ремень и несколько часов работы стоят намного дешевле, чем новый двигатель. Если руководство по ремонту вашего автомобиля рекомендует замену зубчатого ремня с определенной периодичностью (по пробегу или по времени), то следуйте неукоснительно этим рекомендациям.